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In this paper we show the uniform or mean convergence of Hermite-Fejér
interpolation polynomials of higher order based at the zeros of orthonormal poly-
nomials with the typical Freud weight. © 1999 Academic Press

1. INTRODUCTION

Let W?*x)=exp(—x™), where m=2,4,6,.., be the typical Freud
weight, and let the orthonormal polynomials p,(W? x) with the weight
W?(x) be defined by the relation

[ o py WA dx=5,, i j=0,12,., (1.1)
where p,(x) = p(W?* x)=y,x"+ --- with y,>0. We denote the zeros of
Pa(x) by x,, k=1, 2, ..., n, where x,,,> x,,> --- >x,,. Let v be a positive
integer. For an arbitrary real valued continuous function fe C(R), the
unique Hermite—Fejér interpolation polynomial L,(v, f; x) e Il,, _, of order v
based at {x,} is defined by

Ln(vs f9 xkn) zf(xkn)9 k = 13 25 ey 1,

(12)
Ly, f; x4,) =0, k=1,2,...n, r=1,2,.,v—1,

where 17, is the set of all algebraic polynomials of degree <n. The inter-
polation polynomial L,(v, f; x) is written in the form
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L( z (x1,) han(V; X), n=1,2,3, .., (1.3)

where the polynomial /,(v; x) € I1,,, _ satisfies

hkn( Vs pn) = 5pka pP= l, 2, ey N,

(1.4)
h{(v; Xp,) =0, p=12.,n r=12.,v—1.
An explicit form of /,(v; x) is
v—1
hkn(V; x) = Zl‘;n(x) z ejk(x - xkn)j’ k = la 2a s 1, (15)

j=0
where /,,(x) are the Lagrange fundamental polynomials of degree exactly
n—1, that is, with w(x) =7 _, (X —Xy,)

len(X) = 0(X)/{ (X — Xje) O (Xpn) } 5 k=1,2, .. n (1.6)

and the coefficients e, can be calculated by (1.4) (see [3]). We see that
L,(f;x)=L,(1, f;x) is the Lagrange interpolation polynomial and
L,(2, f; x) is the ordinary Hermite—Fejér interpolation polynomial. In [3]
we showed the following.

THEOREM 1 [3, Corollary 1]. Let fe C(R) be a uniformly continuous
function on R. Then, for every M >0, the sequence of Hermite—Fejér inter-
polation polynomials of even order v converges uniformly to f in the interval
[—M, M], that is,

lim max |L,(v, f;x)— f(x)|=0.

n—-ow —M<x<M

THEOREM 2 [ 3, Corollary 2]. Let v be an odd integer. For a and b with
a<b, there exists f € C(R) such that

limsup max |L,(v, f; x)| = 0.
n—-o a<x<b
Recently, for the Lagrange interpolation polynomial L,(f; x), Lubinsky
and Matjila [6] obtained the following nice result. Let W3(x) = exp(—[x|”),
p>1, be a Freud weight, and let L,(f; x) be the Lagrange interpolation
polynomial based at the zeros {x,,} of the orthonormal polynomial
Pu(Wp: x). Let 1 < p<oo. For ae R we define

Koy =min{l, a}. (1.7)
THEOREM 3 [6, Theorem 1.1]. Let A€ R and o> 0. Then, for
lim [|(1 4 |x])~ W(x) WL(f; x)—f(x )}”LP(R):O;

n— oo
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to hold for every continuous function f- R — R satisfying

lim (14 |x])* Wy(x) | f(x)] =

Ix| - oo
it is necessary and sufficient that
A>1/p— Lo if 1<p<4
A>1/p—Lap +(p/6)1—4/p) if p>4 and a=1l;
A=1/p—Lap +(p/6)(1—4/p) if p>4 and a#1.

Our purpose of this paper is to extend Theorem 3 to the Hermite—Fejér
interpolation polynomials L, (v, f; x) based at the zeros {x,} of the
orthonormal polynomial p,(W? x) defined by (1.1). Let «, 4 € R, and let us
define

x<1

13 b
<x>={& S (18)

First, we prove a uniform convergence theorem.

THEOREM 4. Letv=2,4,6, .., and let o + {vm/6) —vm/6 = 0. We fix an
arbitrary constant 1 >n>=0. If

A+ (vm/6) =0, A+ Lo+ vmf6y —vm/63» =0,
then, for every continuous function f: R — R satisfying

Hm (14 [x[)**m =+ mier w(x) | f(x)| = (1.9)

|x| —
we have

lim [|(1+ [x]) =+ W () {Ly(v, f3%) = f()} ] ory =0 (1.10)

Remark. Let v=2,4,6, .., and fix an arbitrary constant 1>#5>0. If
m=v=2 and a+1/3>0, then for 4 +min{2/3, Ka+1/3»} >0 we have
for every continuous function f: R — R satisfying

lim (14 |x)**3=7 W(x) | f(x)] =

|x] = oo
the estimation

lim [|(1+ |x) =22 W) {L,(v, f3 %) = f()} | cry =0

n— oo



HERMITE-FEJER INTERPOLATION 333

If mv+#4 and « >0, then for 4+ a» =0 we have for every continuous
function f: R — R satisfying

lim (14 |x])* GO m=r (x| f(x)] =

|x| = o0
the estimation

lim [|(1+ |x]) =4O W (x){L,(v, f; x)— f(x)} | cr) = 0.

n— oo

The following are the analogues of Theorem 3.

THEOREM 5. Letv=2,3,4,., 1 <p<oo, and o >0. Assume that

A>1/p if 1<p<4y (v<4); (1.11)
A>1/p if (mf6)(v—4/p)<La), p>4/v; (1.12)
A4=1/p—LKap +(m/6)(v—4/p)

if (mf6)(v—4/p)>Lap, p>4/v. (1.13)

(Here, if 4 <v we omit (1.11), and we set p>1 for (1.12) or (1.13).) Then,
for every continuous function f: R — R satisfying

lim (1 + [x])*+@=D6 P (x) | f(x)] =0, (1.14)

|x| = oo
we have

lim [(1+ [x[) =4 W ){La(v, f3 ) = f()} 1y =0. (1.15)

n— oo

THEOREM 6. let v=3,5,7,.., l<p<oo, and a>0. Assume that for
every continuous function f: R — R satisfying (1.14) we have (1.15). Then,
the following inequalities hold.

A>1/p—La+(v—1)m/6)

if 1l<p<dp (v<4), (1.16)
4>1/p—La+(v—1)m/63 + (m/6)(v —4/p)
if p>4/v and a+(v—1)m/6=1; (1.17)

A421/p =Ko+ (v—=1)m/6)) + (m/6)(v—4/p)
if p>4/v and o+ (v—1)m/6+#1. (1.18)
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If we consider the case of v=3,5, 7, ..., then we have the following

COROLLARY 7. Letv=3,57, .., a>1, and let (m/6)(v—4/p)> 1. Then,
for (1.15) to hold for every continuous function - R — R satisfying (1.14), it
is necessary and sufficient that

A=1/p—1+(m/6)(v—4/p).

If v=3, then we suppose p >4/3.

2. PRELIMINARIES

The Hermite-Fejér interpolation polynomial L,(v, f;x) is defined by
(1.2) and (1.3). The Lagrange fundamental polynomials 7,,(x), k=1, 2, .., n,
of degree exactly n — 1 are defined by (1.6), and the fundamental polynomials
hia(v; x), k=1,2,..,n, of L,(v, f;x) are defined by (1.5) with (1.4). For
u>0, the uth Mhaskar—-Rahmanov-Saff number a,=a,(w) is the positive
root of the equation

u=(m/n)(a,)™ Jol (1 —12)~ 12 dy

= (m/2){(m—1)/m!1} (a,)™. (2.1)

Let p, be the leading coefficient of p,(x)=yp,x"+ ---, and we set
b,=7,_1/y,. Furthermore, we also use the number ¢, = (2n/m)"™. Then,
we see that

xlnNaannNQnan/m (22)

as n— oo (see (2.1), (2.3), and [5, (12.26)]), where for the positive
functions b(u) and c(u), b(u)~ c(u) remarks that there exist C;, C,>0
independent of u such that C, <b(u)/c(u) < C,.

We need some fundamental lemmas. Let C be a positive constant
independent of k and n. First, we denote the useful lemmas from [6].

Lemma 2.1 [6, Theorem 2.1]. (a) Forn>=1,
[(X1n/a,) = 1] < Cn 2P, (2.3)
and uniformly for n=3 and 2<k<n—1,

xk—l,n_xk+l,n ~ (an/n)(max{n_2/35 1 - |xkn|/an})_1/2' (24)
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(b) Fornz=l,

sup |1 — [x[/a,|* W(x) |p(x)| ~a, 2. (2.5)
xeR
and
sup W(x) | p(x)| ~n'/ea, 2, (2.6)
xeR

(c) Uniformly for n=1 and 1 <k <n,

W(Xi) | Pr(Xi)| ~ na, P (max{n =7 1—|x,|/a,})"*  (by [5,(1.19)]).
(2.7)

(d) Let 0< p<oo. There exists C>0 such that for n=1 and Pell,,

IWP| Ly < CIWPl 1t g1 (28)

LEMMmA 2.2 [6, Theorem 2.2]. (a) Given 0< p < oo, we have for n=1,

1, O<p<4
I Wpullrry ~ay” =12 x < {log(1+n)} 1, p=4 (29)
n(1/6)1—4/p) p>4.

(b) Uniformly for n=1, 1 <k <n, and xe R,
()] ~ (a3 [n) W(x,)(max{n =25, 1 — |x,|/a,}) ="
X pa(x)/(x = xp)| - (by (1.6), (2.7)). (2.10)
(c) Uniformly for n=1, 1 <k<n, and xe R,

[ W= (k) W) ()] < C. (2.11)

LemMA 2.3 [3, Lemma 6, Lemma 14 (4.16)]. Let ey be the coefficient
of (1.5). Then, by (2.2) we have

lexl < Clnfa,)’,  j=0,1,.,v—1, k=1,2,..n, (2.12)
especially, for odd number j
les | < CM (xp,)(n/a,)’ ", k=1,2,..,n, (2.13)
where

Mn(xkn):an_2|xkn| +|xkn|m_la k:1’25 ey 1. (214)
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Furthermore, we need a certain generalized Hermite-Fejér interpolation
polynomial of (Z, v)-order, /=0,1,..,v—1 (cf. [4]). For fe CY(R) we
define L,(¢,v, f;x)ell,,_, by

L;r)(/, V, f; xkn) :f(r)(xkn)ﬂ r= 05 17 seey /a
LI, f Xi) =0, r=l+1,0+2,.,v—1, k=1,2,..n

The polynomial L,(Z, v, f; x) is written in the form
n £
Ln(fa v, f: X) = Z Z f‘(S)(xkn) hskn(V; X), n= 19 23 39 ooy

k=1 s=0

where for the polynomial &g, (v; x)ell,,_,
WDV X)) =040,  s=0,1,.,7, j=s,5+1,..,v—1, p,k=1,2,...n.
(2.15)

An explicit form of hy,(v; x) is

v—1
hskn(v; x) = /l‘én(x) Z ejsk(x - xkn)j7 k= 15 27 e 1, (216)

j=s

where the 7,(x) are the Lagrange fundamental polynomials.

We see that L,(0, v, f; x) is the Hermite—Fejér interpolation polynomial
L,v, f;x) of order v, and L,(v—1,v, f;x) preserves any polynomial
Pell,,_,, thatis,

L,(v—1,v, P; x)=P(x), xeR. (2.17)

From (2.15) we obtain the following.

LemMA 2.4 [4, Lemma 3]. For the coefficients ey we have

le| < Cn/a,)’~, s=0,1,..,4, j=s,s+1,.,v—1, k=1,2,..,n

(2.18)
From (2.4) there exists a positive constant ¢ such that
da,/n <X 10— X415 j=12, ..,n, (2.19)

where

xOn:xln(l_'_n_Z/s)’ xn+1,n:xnn(1 _n_2/3) (Cf (23))
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Therefore, if we set

Xiw— X =t(k, X) oa,/n, k=0,1,..n+1, (2.20)
then we see that

tn+1,x)<t(n x)< --- <1, x) <0, x),
and

G—Lx)—tj+1,x)=1, j=12 ..n

3. PROOF OF THEOREM 4

Throughout this section we assume that o + {vimn/6> —vm/6 =0, 4 + vm/6
>0, and 4+ o+ {vm/6) —vm/63) >0, where { -» and < -) are defined
by (1.7) and (1.8), respectively.

LemMA 3.1. Let v=2,4,6, .., and ¢>0, 1 >n=0. If ge C(R) satisfies
(1 [x[)x = ome> p(y) [g(x)| <e,  x€R, (3.1)

then we have

2 () = (L [x|) =m0 r(x Z 8(Xp) i (X)| < Ce,  x€R,

where C is a positive constant independent of n and e.

Lemma 3.2, Letv=1,2,3,..,and 1 >n>=0. If g€ C(R) satisfies that for
a positive constant M(g),

(L [x[yrtm=ntomior pr(x) |g(x)] < M(g),  xeR,

where M(g) may depend on g, then, for every x € R we have

Y )= (L4 [x) =IO W (x) Y |8(xk) h(x)] < CM(g) log(1 +n),

k=1

where
v—1
B =100 Y (nfa,) |x — x|, (3.3)
j=0

and C is a positive constant independent of n and M(g).
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Throughout the paper, the letter C denotes a positive constant which
may differ at each different occurrence, even in the same chain of
inequalities. Let 0 be the positive constant which is defined by (2.19). We
often use the expression (2.20).

Proof of Lemma 3.1. (i) Let K={k;|x—x4,|<da,/n}. Then, the
number of K is at most four. By (2.11)

W (Xe) [W(X) LX) < C, xER,

therefore, using (3.1) and (2.12)

1

2 ) =1+ x)"UO W) Y| g(xsn) g X)]

keK
S (1 |x) @O 3T W= X ) WIX) LX) I (Xn) &( Xt
keK

v—1

xS (nfay) (a,/n)’

j=0

S Ce Yo (1 [y, |) - rermmme Qm/eymio) - (by x| ~ |x,)

<C8 Z (l+|xk |)—(A+<<ot+<vm/6>—vm/6>>+m—r]+vm/3)
n

Consequently, we assume that |x—x,|>da,/n below. Using (2.10)
(or (2.7)) we rewrite > (x) of (3.2) as

2 ()= (L4 [x) =A@ 3T W) po( )/ W(Xkn) Do Xi) } 7

k=1

v—1
X | W(Xpn) &(Xsn)| Y. |€jk(x_xkn)j7v|
j=0
< C8(1 + |x|)—(A+vm/6)

X i a2 W(x) pa(x)/[na; {max(n =23 1 —|x,|/a,)} 4]
k=1

v—1
X (1 [ ) "=t Cm) 5T e (X — X)),
j=0
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therefore, by (2.12), (2.13), and (2.14)

Z (x) < Ce(1 + |x])~A+m/®

Z X xkn +|X—an|7l {a;z |xkn|+|xkn|m71}](an/n)2

X (1 1) 77 (1 g [) = /o)
X a2 W(x) p(x)max(n =, 1= x| fa,)} )" (34)

Let 0 <f<1. We use (2.5) and (2.6).

(ii) We consider the sum Y% (x) for the case of |x,| < fa,, |x| < fa,.
By (3.4),

2

Y (x)<Ce 22: [t(k, x) >+ |t(k, x)| =" |n/2 — k|7~ ']

k#n/2

S (14 |3, |) =@ m/6) (1 4 |x|)—A+m/6)
(by 1+ | x4 | = C (/2 — k| (a,/n))

< Ce.

(iii) We consider the sum Y°(x) for the case of |x.,|=pfa,/2,
|x| = fa,/2. Let |x| <2a,, then we see that |x| ~ |x,| ~a,. By (3.4),

3

3
Y (x)< Ce Y [ilk, x) 72+ |1k, x)| =" [n/2— k|~ 1]
X (1 + |xkn|)—(A+oc+(vm/6>—vm/6)

< Csan—(d + Lo+ {vm/6)> —vm/6))
< Ce.

If 2a,<|x|, then by (2.5) we see that |aY?>W(x) p,(x)| < C. Therefore
by (3.4),

3 3
Y (x)<Ce ) [tk x) 2+ [u(k, x)| " |n/2 —k]" 1]
X (1 + |xkn|)—(oc+<vm/6>—vm/6) (1 + |x|)—(A+vm/6)

< Ce.
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(iv) Let |xp,|<pfa,/2, fa,<|x|<2a,, and let us denote the sum
with respect to these x,, and x by 3% (x). By (3.4),

4 4
3 (0 < Co(1+[x)) ™Y, [, 2+ a; (@ n)? (1+ [, |) ~(0 L2 mle>)

Ban
<Cg(1+|x|)—4(1/n)j (14 1)~ @11+ Om6) g (by (2.4))
0
1, a—n+<vm/6) >0,
< Ce(1+|x])"*a,; " x< log(1 +n), a—n+{vm/6) =0,
a o+ m/6r) a—n+{vmf6) <O.

If 4 >0, then by a+ {vm/6> —n +m >0 we see that

Y (x) < Ce
If 4 <0, then we see that
4 1, a—n+<{ym/6) >0,
Y (x) < Cea,; “*™ x < log(1 +n), a—n+<{vmf6) =0,
a; T mi6r) a—n+{vm/6) <O.

Since
A+m>A4+1=0,
A+m+oa—n+{vm/6) 24+ La+ {vm/6) —vm/6) +vm/6 —n+m >0,

we have

Y (x) < Ce

(v) Let |xg,| <pfa,/2, 2a,<|x|, and let us denote the sum with
respect to these x,, and x by 3° (x). By (3.4)

5
Y (x)<Ce(l+ |x|) A+ vmie)

5
Xy La2+a;  N(a,/n)? (1 + |xg,|) =@+ =+ me)

Pan
< Ce(1/n) j (14 1)~ 1=1+OmO) g (by A+ vm/6>0)
0

1, a—n+{vm/6) >0,
< Cea,;™ x < log(1 +n), a—n+{vm/6) =0,
a T mi6r) x—n+<{vm/6) <0.
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Since a+ {vm/6) —n+m >0 we see that
5
Y (x) < Ce.
(vi) Let |x|<pfa,/2, Pa,<]|xy,|, and let us denote the sum with
respect to these x,, and x by 3®(x). By (3.4),

6 6
Y (x)< Ce(1+4 |x[)~“H™ON [a, % +a, ' 1(a,/n)

X (1 + |xkn|)—(oc+1—r/+<vm/6>—vm/6)

PBan
<Cs(1/n)j (14 ¢)=CH1=n+Omi&> —mi6) gy (by A 4 ym/6=0)
0

1, o —n+vm/6) —vm/6 >0,
< Cea, ™ x < log(1 + n), a—n+<vm/6) —vm/6 =0,
an_("‘_”+<""/6>_v’”/6), oa—n+<vm/6) —vm/6 <O0.

Since a + {vm/6) —vm/6 —n +m >0 we see that

6

Y (x)<Ce 1

Proof of Lemma 3.2. For odd number v we can use neither (2.13) nor
(2.14). However, if we repeat the same method as the proof of Lemma 3.1,
then by (2.12) we obtain the upper bound

n

2 ()= (1 [x]) =/ pr(x Z 8(Xx) hif(x)] < CM(g) log(1+n). 1

Proof of Theorem 4. Let the assumptions of Theorem 4 be satisfies. By
(1.9), there exists a polynomial P,(x) such that

(14 |x|)xFm=n+t<me ry(x) | f(x) — Py(x)| <e, xeR  (3.5)
(cf. [2, p. 180]). By (2.17), for n large enough we have
L,(v—1,v, P ;x)=P/(x), xeR.
BY Jiopn(v; X) = Iy, (v; X),
(L4 |x) =@ W (x)[Ly(v, f3 %) = f(x)]

(14 [x]) =0 () [L,xv, f= P x) + Pix) — (%)

iy Y Pf’(xk,»hskn(x)]

k=1 s=1



342 KASUGA AND SAKAI

By Lemma 3.1 and (3.5), it is easy to see
(L4 |x) @O W)Ly, f = Py; X)| + [Py(x) = f(x)| 1< Ce

Therefore, it is enough to show that

n 12
(1 + |X|) (A vm/6) Wv Z z PE;S) 'xkn skn(x)
k=1 s=1

lim

n— oo

=0. (3.6

C(R)

y (2.16) and (2.18),

n 3
(14 |x]) = o (x Z Y PO(xi) hgen(x)

=1 s=1

n 12
C(L+[x) "W (x) 3o 3 PO () £ X))

k=1 s=1
X (n/an)j_s |X—an|j

<C i (@, /n)* (1 +[x[) =m0 1(x) i [P (k) £ ()]

1 k=1
-1 ) )

X Z (n/an)] |X—an|J
j=s

7

< C(a,/n) ). (x), say. (3.7)

where

2 (x)

(14 |x|) = m/o W (x Z [P (Xn) £ 3nl(X))

1 k=1

X Y (nfa,) 1x — x|

Jj=0

Il
I~

Now, since P,(x) is a polynomial defined by f and &, we have

(14 |x)xrm=n+<ome> W (x) |P&(x)|
<C(s,¢& f), xXeR, s=1,2,..,7,

where C(s, ¢, f) is a positive constant independent of n. Therefore, by
Lemma 3.2 we have

Y (x)<C'(s, & f)log(1 +n), (3.8)
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where C'(s, &, f) is independent of n, and may depend on s, ¢, and f. Conse-
quently, by (3.7) and (3.8) we obtain (3.6), therefore (1.10) was shown. ||

4. PROOF OF THEOREM 5

In the rest of the paper we investigate the mean convergence of the
Hermite—Fejér interpolation polynomial L,(v, f; x). Since for the Lagrange
case we have Theorem 3, the order v is assumed v=2,3,4,... In this
section we obtain a direct theorem, then the following are assumed. Let
l<p<oo,a>0, 4€R, and let the conditions (1.11) or (1.12) or (1.13) be
satisfied. A real valued continuous function f € C(R) satisfies (1.14).

LEmmaA 4.1 [6, Lemma 2.7]. Let 0<p <2, then, for xe R

Wix) Y (L4 XD ™ W () [

|xkn|>ﬁan
1, x| < fa,/2,

< Ca,* xS a2 W(x) p,(x)| +log(1+n),  fa,/2<|x|<2a,,
a,/|x|, 2a, < |x|.

Let us define
- v—1 )
(%) = 1275, Y. el — X ). (4.1)
j=0

LEmMMa 4.2. Let 0 <fi<2. Then, for x € R,

Y)=Wx) Y (L g )T W ) By (v; )

|xkn|>ﬂan
1, x| < fa,/2,
<Ca—x (lay> W(x) p, ()"~ "+ D){lay? W(x) p,(x)| +log(1 +n)},
S Pa,/2 < |x| <2a,,
a,/|x|, 2a, < |x|. (4.2)

Proof. First, we set

Z(x)={W(x> T (14 )~ 7 (xp) |fkn(x>|}Ak(x), (4.3)

|xkn| >ﬁ"’n
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where

Ak(x)=|W—1(xkn) W(x) £, (x)|* 1 Z le kx Xin) | (1+|xkn|)_(v_l)m/6‘

Then, we show that

A(x)=C {1, |x| < fa,/2 or 2a,<]|x|,
X)= X
y (lay?W(x) p ()"~ 4+ 1), Ba,/2<|x|<2a,.
(4.4)
We note (2.12). For |x — x,,| <da,/n, we use (2.11).
A(x) S C W N xp,) WI(X) Lo X)) 71
v—1
X (14 [xg, )00 N (nfa,) |x — xp, |7
v—1 ) )
C(1+ |xg, ) == D™ N (nfa,)’ (a,/n)’ < C. (4.5)

j=0
Let |x| < fa,/2 or 2a, < |x|, and |x — x,, | = da, /n. Then, by (2.5) and (2.7),
A(x) < C a2 W(x) pulx)/L(x = Xpp) ma;!

xc Amax(n =, 1 —[xp, |/a,)} 41171 (1 + [xg, [) ~0—D™e
v—1

X Z (n/an)j |X—an|j

Jj=0
< C{max(n =, 1= |y l/a,)} =~ (14 |, ) =008
<C

(4.6)
If fa,/2 <|x| <2a, and |x — x;,| > da,/n, then we have

A(xX) < Cla,? W(x) po(x)/[(x —xp,) na,!

X {max(n’zﬂ, 1 - |xkn|/an)} 1/4] |V71
v—1

X (14 X )70 N (mfa,) |X — g |
j=0

< Cla,?Wix) p,(x)'~{max(n =27, 1 —|x, |/a,)} =~ D*
X (L [xg )~ D0

< Cla? W(x) p(x)'~1 (4.7)

Therefore, by (4.5), (4.6), and (4.7) we obtain (4.4), consequently (4.3).
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Applying Lemma 4.1 to (4.3) we obtain (4.2). |

Lemma 4.3 (cf. [6, Lemma 3.1]). We set 0<f <2, and we let n=1, 2,
3, ... If f,(x)=0 for |x| < pa,, furthermore,

|W(x) fu(x)] <e(1 4 |x]) =+ C=bm6 - xeR,
then we have

lim sup [[(1+ [x]) = W¥(x) Ly(v, f3 X) | 1,0r) < Ce. (4.8)

n— oo

Proof. By Lemma 4.2

[W(x) Ly(v, f0: X))
SeW(x) Y (4 g ) 0D W) (Vs x)

|xi | = Ba,
1’ |x| <ﬁan/2)
1/2 v—1 12
< Coa | (18 PA¥)1" 4+ DE a2 W) o)+ log(1 +m)}.
a2 < ¥ <2a, o)
an/|x|5 2a,,< |x|

We repeat the same method as the proof of [6, Lemma 3.1] below.
From (4.9),

T =(1+|x]) = W(x) L,(v, f,; X)HLI,(|x|</fan/2)

< Cea, (1 +|x| 7A|‘Lp(|x|<ﬁan/2)

1, Ap>1,
< Cea, * x < {log(1+n)}'?,  Ap=1
alp=A Ap<1.

Here, we see that all conditions of (1.11), (1.12), and (1.13) imply

I/p—(a+4)<1/p—(Ka) +4)<0. (4.10)

Therefore,

Next, we estimate

=1+ x))~* W WYy Sy x HL(ﬂa/2<|x|<2a)
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Using Lemma 4.2, we have, again
2 —o 2—
1D < Cea[a)? = | W(x) p"(x)Hvav(/”an/2<IXI<2an)
+a,>= 4| W(x) pn(x)HLp(ﬂan/2<|x| <2a,)

+{log(1 +n)} aly =P W(x) pn(x)”;,;(vl_l)(ﬂan/2< x| <2a,)

+{log(1 +n)} aP=4].

Since, by (2.2) and (2.9),

1, p <4,
[ W(x) pn(x)”Lp(R) ~ay?= 12 xS {log(1+n)} 4, p=4,
am/e1—4/p). p>4,
we have
1, 1 <p<d)y,
T L CeallP ==+ {log(1+n)} ", p=4/v,
o =4/p), >4,
1, 1<p<4,
+< {log(1+m)}",  p=4,
a6 —4/p) >4,
1, l<p<d/(v—1)
+ {log(1+n)} x< {log(1+n)} =4, p=4/(v—1),
agroe 1= s afy—1),

+{log(1+n)}

Therefore, by our assumption (1.11) or (1.12), or (1.13),
‘L'LZ) < Ce.
Finally, from (4.2),

= |[(1+[x])~* W(x) L,(v, f; x)HLp(|x|>2an)

< Cea, x|~ (14 |x]) ‘|Lp(|x|>2an)'
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Therefore, by (4.10),
3L Ceallr =+ D L Ce.

Consequently, we obtained (4.8), that is, the proof of Lemma 4.3 is
complete. ||

LEMMA 4.4 (cf. [6, Lemma 3.2]). Let ¢>0, 0<f<1. We assume that
¥, eC(R),n=1,2,3, .., are the functions satisfying

¥, (x)=0, lx| = pa,,
and
| W (x) P,(x)| <e(l+|x|)~terO=Dmei - xeR,
Then,

lim sup [[(1+ |x]) =" W(x) Ly(v, 5 X) 1 (11 > 2pa,) < Ces

where C is independent of ¢, n, and ¥,,.
Proof. We see that
| W¥(x) L(v, ¥,5 x)|

<e Y W T ) WIX) ()] (14 |xg, 1) ™" Ag(x),

[ | < Ba,

where A,(x) is given by (4.3). Then, by (4.5), (4.6), and (4.7),
A(x) < a2 W(x) pu(x)" 1+ 1),
Since |x| =2fa, and |x,,| < fa,, we obtain |x,, — x| ~ |x|. Hence, by (2.10),
[W?(x) L(v, ¥,; x|
< Ce(la,> W(x) pu(x)" "' +1)

Y W xg) W) G(3)] (14 [Xg,])

|xkn| <ﬂan

< Cella, W(x) p(0)I" + la,> W(x) p,(x)]) x] 7

x(ap/n) Y (T4 ]xg|)7"

|xkn I <ﬂan
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< Cella,” W(x) p(0)I" + la,? W(x) p,(x)]) x|~

Y (XD ™ (51— Xes1,n) (DY (24))

|xkn | Sﬁan

< Ce(|a,> W(x) p(x)|” + |a,? W(x) pu(x)]) |x] !
2pa,
xj (14 |¢]) == dt
—2pa,
< Ce(|ay> W(x) p(x)|”+ la)> W(x) p(x)]) [x] =" a,~ <> (log n)*,

where

log(1 +n), a=1,
1, otherwise.

(logn)* ={

Therefore, by (2.9),
L+ [x)) = W) Lo(v, i X) | 1,151 > 2pa,)
< Ceay= €2 (logn)* a, 4+
x (lay W) pa()z, ry + llag? W(x) pu() L, m)  (by 4+1>0)

< Ceql/p—4+ <<rx>>)(log n)*
n

1, 1< p<d)y,
x| {log(L+m)}",  p=4)y,
n(/6)—4/p). >4,
1, I <p<4,
+<{log(1+n)}',  p=4,
(/61 ~4/p). p>4

< Cgailq/pf(d + <<oc>>)(1Og n)*

1, I <p<4)y,
x| < {log(1+n)}"4, — p=4p,
almIov—4p), p>4/,
1, 1<p<4,
+< {log(1+n)} 4, p=4,
e —4p), p>4,

<Ce  (by(L1l)or(1.12)or (1.13)). 1|
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LeMMA 4.5 (cf. [6, Lemma 3.4]). Lete>0,0<f<1/2, and assume that
Y.(x)eC(R), n=1,2,3, .., are the functions satisfying

Y (x)=0,  |x[>pa,,
and
[W7(x) (x)] <e(l+|x|) "l C=Dm6 - xeR, n>l
Then,

limsup [|(1 4 |x]) = W"(x) L,(v, ¥,; X)HLP(|x|<2ﬁan) < Ce.

n— oo

Proof. By definition
|W?(x) L,(v, ¥,; x|

St Y 10+ )7 W (o) () f()] Ag(x)

Xt | < Ba,
<Ce Y (14 |xe )7 W (xg,) W(X) fe(x)],
|xkn|<ﬁan

where A4,(x) is defined by (4.3), and then, 4,(x) < C, x<2fa,. We use the
expression (2.20). By (2.7), (2.11), and (2.5),

W (x) L(v, ¥,; x)

<Ce > (1+ X0 ) " a2 W(x) p,(x)/t(k, x)|
|Xtn | < Ba,, t(k, x) #0
<Ce > (1+ X4 )~ [1/t(K, X))

| X | < Pay,, t(k, x) #0

Therefore, we have
|W¥(x) L(v, ¥,; x)| < Ce{log(1+n)}. (4.11)
By (4.11),
1T+ 1)) = W(x) L(v, W5 X) | 1 11 < 2pa,)
< Ceflog(1+nm)} 11+ 1xD) ™) £, (14 < 24,)

< Ceflog(1+n)} a¥?=4  (by (1.11), (1.12), and (1.13))

< Ce.

Consequently, we see that the proof of Lemma 4.5 is complete. |
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_ Remark 4.6. In the above consideration of Section4 we can replace
Bea(x) i (4.1) by hE(x) = |£3,(x)] 3720 (#/a,)’ |x —x;,|7 (defined in (3.3)).

Proof of Theorem 5. By (1.14) there exists a polynomial P,(x) such
that

[(1+ |x)*+O=Dme (o)l f(x) — Px)} <e,  xeR
(cf. [2. p. 180]). Since (by (2.17)),
L,(v=1,v,P;;x)=P(x) and  fo,(v;x)=hg(v;x),  x€R,
we have
(L4 |x)) = W (x)[L(v, f:x) = f(x)]

=(1+[x[) = W'(x) {Ln(v, =P x) +{P(x) = f(x)}

n 3
+ Z Z PES)(xkn) hskn(x):|

k=1 s=1

=2 (0)+ 2 (%) + X (x).

Let y[ —a,/4, a,/4] denote the characteristic function of [ —a,/4, a, /4]
and write

S =pe=(=p) L —an/4 a,/4] +(f =p )1 = [ —a,/4, a,/4])
= an_'_fn‘

Applying Lemma 4.3, 44, and 4.5 to f, or ¥,, we obtain

< Ce.
L(R)

> (%)

Since, by (4.10) we see that —p{d+a+(v—1)m/6} < —p(d+a)< —1,
we also have

< Ce |[(14 x|yttt O=Dmh o < Ce.

2 (%)

2

Ly(R)
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Finally, we estimate > 5 (x). We see that
n 3
( + |X| z Z (S) xkn) hskn( )

<C Z (1+|x])~ Z [P (X1n) £ 3(X)]

1
(nfa,)’=* |x = x|’

<

X
'MI

<
Il
w

( /1) (14 1x)7 P‘S’ (Xkn) £ (X))

HM=

»

//\
[ [v]\

X Z (n/an)j |X—an|j
j=0

=C(a,/n) Y (x),
3
where

Y ()=

3 K

I~

(I+1x)™ Z [P (xp) )]
1 =

Z (nfa,)’ |x —x.,|".

Here, P.(x) is defined by only ¢ and f, therefore there exists a positive
constant M(s, ¢, f) such that

[ W (x) PO(x)| < M(s, e, f)(1 + |x]) et C=Dm/6 91,2, .,/
Let 0 <f <1, and let us define
Ssen(x) = pP(X)(1 = 1L = Pa,, Pa,])
and
P n(X) = pO(x) 1L — Pay, fa,]

for each s=1,2,..,/. Since by Remark 4.6 we can apply Lemma 4.3,
Lemma 4.4, and lemma 45 to f,, or ¥,,, we have

Y (x)

<Ci M(s, ¢, f)

Ly(R)
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(we replace ¢ to M(s, &, /) in each lemma). Consequently, we see that the
proof of Theorem 5 is complete. ||

5. PROOF OF THEOREM 6

In this section we let v=3,5,7,.., and we will obtain an inverse
theorem. We need the following lemmas.

LemMA 5.1 [6, Lemma 2.5]. Let &€ R. There exists C>0 such that for
A=2, there exist polynomials P¥ of degree < CAlog A satisfying

PHO~(1+2),
uniformly for —A<t<A.

LemMa 5.2 [6, Lemma 3.5]. LetO<o<l,0<0<1—0,and 1< p<oo.
Then, there exists C such that for n=1 and P of degree at most On, we have

n

HPHL[ ag,.a rm]\Cal/z > HijP”Lp[fan,an]'

j=n—1

The following proposition is important itself, and to prove Theorem 6 we
use it as one of the lemmas. We use the number ¢, = (2n/m)"™ instead of a,,,
defined in Section 2 (see (2.2)). Let f=(1/2){n'*I(m/2) /F (m+1/2)} '™ be
Freud’s constant, and let o =m(m/2) =D/ (m=2) pm =1,

In [3], we showed that the proposition held for x4, €[06, ©], where
0 and @ are positive constants. We omit the proof of Proposition 5.3,
because we can show it by careful repeating the same line of the considera-
tion as one in [3].

ProrosiTION 5.3 (cf. [3, Lemma 14]). For j=0,1, 2, .., there exists a
polynomial ¥;(x) of degree j such that (—1)’ ¥,(—v)>0 for v=1,2,3, ..,
and the following relation holds: Let 0 <¢ < 1. Then, we have an expression

eZs,k_(_l {1/ 2S } Yj ) qiS(m_l){l-'_r/kn(va S}a (51)
where n;,(v, ) satisfies
(v, )| < Ce?, (5.2)

for k with |x,,|<eq, and s=0, 1, .., V. Here, the positive constant C is
independent of n, k, and ¢, and may depend on v, s, and m; vV is the largest
integer not exceeding (v—1)/2.
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Proof of Theorem 6. Letv=3,5,7, ... We repeat the line of [ 6, proof of
the necessary conditions of Theorem 1.3]. Let {(x) be an even continuous
function that is decreasing in [0, c0), with

{(x) = {log(2 + |x])} ~ 2 (xeR), lim ¢(x)=0.

Let us define two spaces: X consists of all continuous functions satisfying
1A= 1L+ x> =D w2 (x) f(x) CH) | emy < o0,
and Y consists of all measurable functions satisfying
1Ay = I+ 1)) =4 W (x) S0 ) < 00

For each fe X, (1.14) is satisfies, so our hypothesis ensures that

lim |[L,(v, f) = flly=0.

n— oo

Since X is a Banach space, by the uniform boundedness principle, there
exists C >0 such that for n=1, 2, 3, .., and every f € X,

ILa(v, ) =S ly < C [ flx-

Noting L(v, f; x) = f(0), x € R, we have for every fe C(R) with f(0)=0
that

I/ y<CIlflx
consequently, we obtain
IL.v, Dy <Cllfllx, (5.3)
that is,
ICE+ XD~ () L, f3 X))
SO+ XD D0 W (x) £(3)] cry- (54)

Let 0 <¢ be small enough, and let us consider the function g, € C(R) such
that g,(x)=01in [0, o0) U (— 0, —¢&a,);

gl x= T+ X7 D™0 WH(x) gu(x)lemy=1:  (5.5)
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and for —ea, <x,,<0,
M ) (1A 0 )X O™ D O W (x40,) 80Xk SiEN Pr(Xn) } = 1.
Then, for x> 1, we have

|Ln(v7 gn) x)| = Z (xkn [pn /{ X — xkn)pn Xkn }]v

xkne[ ea,, 0)
XZ (x—x,)7|. (5.6)

Here, we show that for v >3 and so n large enough,
v—1
(=D D2 /(x = x)" ™ Y el X —X4)’ = Cnfa,)" " (5.7)
j=0
In fact, using the expression (2.20) we see that for x > 1 and x,,, € [ —e¢a,, 0),
|1(k, x)| da,/n=x =t(x) da,/n>1,

where #(x) is a positive number. Therefore, we have
|lt(k, x)| = 1(x) = (1/0)(n/a,). (5.8)
By (5.1) and (5.2), there exists a positive constant C(v) such that
(=D D2e, = Cv)(nfa,) " (5.9)
From (5.8) and (5.9),

v—1

(=D = xp) ] Y el = X)

j=0

v—2
=(—10=r {ev—l,k+ > ejk(x_xkn)j_v+l}

> CONfa) 1= C'Y (na,)? {11k, )] 6177+ (nja,)"~1~7

= (nfa,)’ ! {C(v)_cvz (it x)lé}jv+l:|

Jj=0

> (nfa,)" =" [C(v) = Cla,/n)]

C(nja,)

Therefore, we obtain (5.7).
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Let 1 <x<2a,. Applying (5.7) to (5.6), we have

IL(v, g3 X))

>C Z gn(xkn)[pn(x)/p;(xkn)]v(x_xkn)il (n/an)V71

X, €[ —ea,, 0)

= ( /n) |a1/2 (x)|" Z (1_|_|xkn|)7{oz+(v71)m/6}

X € [ —eay,, 0)

X C(an)(x - xkn) -t

> Cla,) lap ()" Y (1 4 |xg, )~ =+ 0= Dms}
Xpn €[ —eay,, 0)

X (X — Xp) ! (Xk—1,n—Xk+1,) (by (2.4))

ea, /2
> Cllay) a0 | T+~ 0=0m8 )] dn
0

ea,/2
> Cl(a,)(|a)p, )Iv/x)J (1 41)~{=+O=Dme} g
0

> Cla,)(la,pu(x)]"/x)

1, +(v—=1)m/6>1,
x < log(1 + min(ea,/2, x)), +(v—=1)m/6=1,
(min(ea, /2, x))! ~tx+=Dm/6} +(v—1)m/6<1,
> Cl(a,) |alp(x)|Y x =€+ =Dm/E> (Jog x)#, (5.10)
where

log(1 + x), a+(v—1)m/6=1,

(log x)* = .
1, otherwise.

The last inequality is obtained by considering 1 < x <e¢a,/2 and ¢a, /2 < x
< 2a, separately. Since by (5.3) we see that

[L,(v, g ¥y<Clgullx<C,
we have
C= (14 |x]) =" WY(x) L,(v, g, X)) £,1, 24,)
> C{log(1 +n)} ~1H@P} (1 4 |x])—(A+<Lar =1 m/6))

x a2 W(x) pa(x)]” Iz, 1. 24,) (see the definition {(x)). (5.11)
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Since by (2.5) we have

(1 A+ ||y~ €t =02 @ 2 W(x) po(x)]”l 0.9 < €,
(5.11) implies that

C> {log(l +n)} —{1/Cp)} L1+ |x|)~A+ e+ =)m/63)
X |ar11/2 W(x) pn(x)lvHLp(—Zan,Zan) - C].
Therefore,
C{log(l +n)} 1/(2p) Zarl/Z (1 + |x|)f(d+<<a+(vf1)m/6>>)
x| W(x) pn(x)lv”Lp(—Zan,Zan) -G,
that is,
C{log(l +n)} 1/(2p) >a;/2 I(1+ |x|)—(d+<<oc+(v—1)m/6>>)/v

x | W(x) pn(x)IHZM_zan,zan)—C (5.12)

Now, let P, be the polynomial of Lemma 5.1 of degree 0(a,, log a,) = o(n)
such that for |x| <2a,,

P, (x) ~ (14 x2) @+ ot 0= Dm/63)/2)

~ (14 |x]) =@+t =1y,

We obtain from (5.12) that

C{IOg(l'i"’l)}l/(zpv)?a:,/z Z [W(x) p;(x )Pfa( )HLPV(—Zaj,Zaj)_C‘

Jj=n—1

In Lemma 5.2 setting ¢ = 1/2 and 6 =1/4, we have

C{log(1+n)} V> C | P%, (x) -C

HL (—an/z a”/z)

>C H(l + |x|) 4+ Lat(v— l)m/6>>)/v” -C

pv( an/Z an/Z)
a;l/v){(l/p)—(A+<<a+(v—l)m/6>>)} —C,
A4<(1/p) = La+(v=1)m/6,
>Cx < {log(1+n)}"» —C,
=(1/p)=La+(v=1)m/6}),
1-C, A4>(1/p)—La+(v—1)m/6).
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However, for these inequalities can occur only the last one, that is, 4 >
(1/p) —La+(v—1)m/63). Therefore, we obtain the necessary conditions
for 1 < p<4/v (but v<4).

Next, we consider the case of p >4/v. We return to (5.10), that is,

IL(v, g3 X)| = CLay) la,*p,(x)]" x = €xH=DmE> (log x)#. (5.13)
First, by (2.5), (2.6), and (2.8) we see that for 0 <#x < 1/2 small enough,
IW(x) Pa(X)] £, xa,, 2, ~ IW(X) Do)l () (5.14)
Therefore, by (5.4), (5.5), (5.13), (5.14), and (2.9), we have
C= (14 |x]) = W"(x) L(v, &, x)HLP(rcan,Zan)
> Cé(a,,) a;ﬂan—(d+<<11+(v—1)rn/6>>)(10g I’l)#
X IW) P, (ray, 20
Cl(a,) al/p =@+ e+ = 0mi6») (Jog ) # g/OL = H(w)} (by 4/v < p)
> Cl(a,) al/p =A@+ <at =D m/6Y)+ om/6){(1=4/(m)} (|og ) *# (by (2.2)).
Therefore, we have
C{log(1+n)}VCP) > gl/p =4+ et 0= Dml6») + /&0 —4p)(Jog n)#. (5.15)

Consequently, if «+ (v —1) m/6 =1, then we see that

I/p—(4+ La+ (v=1)m/6)) + (m/6)(v—4/p) <0

(recall the definition of (log n)#), therefore we have (1.17). If a + (v — 1) m/6
# 1, then (5.15) implies that

C{log(1 +n)} V@) > gV/p—(d+Lat =D m/6»)+ (m/6)v—4/p)
Therefore, we have
lp—(4+ Lot (v—=1)m/63)) + (m/6)(v—4/p) <O0.

Thus, we have (1.18). Consequently, the theorem follows. ||

Proof of Corollary 7. Let v=3,5,7, .., and let a > 1. Furthermore, we
assume that (m/6)(v—4/p) >1 for v> 3, or if v=3, then p >4/3. Then, the
condition (1.13) is equivalent to the condition (1.18). ||
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